Title of article :
A new simple (infinity)OH neuron model as a biologically plausible principal component analyzer
Author/Authors :
M.V.، Jankovic, نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-852
From page :
853
To page :
0
Abstract :
A new approach to unsupervised learning in a single-layer neural network is discussed. An algorithm for unsupervised learning based upon the Hebbian learning rule is presented. A simple neuron model is analyzed. A dynamic neural model, which contains both feedforward and feedback connections between the input and the output, has been adopted. The, proposed learning algorithm could be more correctly named self-supervised rather than unsupervised. The solution proposed here is a modified Hebbian rule, in which the modification of the synaptic strength is proportional not to pre- and postsynaptic activity, but instead to the presynaptic and averaged value of postsynaptic activity. It is shown that the model neuron tends to extract the principal component from a stationary input vector sequence. Usually accepted additional decaying terms for the stabilization of the original Hebbian rule are avoided. Implementation of the basic Hebbian scheme would not lead to unrealistic growth of the synaptic strengths, thanks to the adopted network structure.
Keywords :
(alpha)-Amylase , Bacillus subtilis , enzyme purification , histidine modification , Thermophilic bacteria , hydrolytic enzyme
Journal title :
IEEE TRANSACTIONS ON NEURAL NETWORKS
Serial Year :
2003
Journal title :
IEEE TRANSACTIONS ON NEURAL NETWORKS
Record number :
62721
Link To Document :
بازگشت