Title of article :
A compact 3D VLSI classifier using bagging threshold network ensembles
Author/Authors :
A.، Bermak, نويسنده , , D.، Martinez, نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-1096
From page :
1097
To page :
0
Abstract :
A bagging ensemble consists of a set of classifiers trained independently and combined by a majority vote. Such a combination improves generalization performance but can require large amounts of memory and computation, a serious drawback for addressing portable real-time pattern recognition applications. We report here a compact three-dimensional (3D) multiprecision very large-scale integration (VLSI) implementation of a bagging ensemble. In our circuit, individual classifiers are decision trees implemented as threshold networks - one layer of threshold logic units (TLUs) followed by combinatorial logic functions. The hardware was fabricated using 0.7-(mu)m CMOS technology and packaged using MCM-V micro-packaging technology. The 3D chip implements up to 192 TLUs operating at a speed of up to 48 GCPPS and implemented in a volume of ((omega) * L * h) = (2 * 2 * 0.7) cm/sup 3/. The 3D circuit features a high level of programmability and flexibility offering the possibility to make an efficient use of the hardware resources in order to reduce the power consumption. Successful operation of the 3D chip for various precisions and ensemble sizes is demonstrated through an electronic nose application.
Keywords :
Thermophilic bacteria , histidine modification , hydrolytic enzyme , (alpha)-Amylase , enzyme purification , Bacillus subtilis
Journal title :
IEEE TRANSACTIONS ON NEURAL NETWORKS
Serial Year :
2003
Journal title :
IEEE TRANSACTIONS ON NEURAL NETWORKS
Record number :
62742
Link To Document :
بازگشت