Author/Authors :
G. Kellner-Weibel، نويسنده , , Y. J. Geng، نويسنده , , G. H. Rothblat، نويسنده ,
Abstract :
The present study examines the fate and effects of free cholesterol (FC) generated by the hydrolysis of cytoplasmic cholesteryl esters (CE) in model macrophage foam cells. J774 or elicited mouse peritoneal macrophages (MPM) were enriched with CE by incubating with acetylated low density lipoprotein (acLDL) and FC/phospholipid dispersions, thus creating model foam cells. Treatment of the foam cells with the acyl coenzyme-A:cholesterol acyltransferase (ACAT) inhibitor, CP-113,818, in the absence of any extracellular cholesterol acceptors, resulted in cellular toxicity. This was accompanied by an increase in the amount of FC available for oxidation by an exogenous cholesterol oxidase. Furthermore, cellular toxicity was proportional to the size of the oxidase susceptible pool of FC over time. Morphological analysis and in situ DNA fragmentation assay demonstrated the occurrence of apoptosis in the ACAT inhibited cells. Co-treatment with the hydrophobic amine U18666A, an intracellular cholesterol transport inhibitor, led to a dose dependent reduction in cytotoxicity and apoptosis, and blocked the movement of FC into the oxidase susceptible pool. In addition, treating model foam cells with CP-113,818 plus chloroquine, a compound that inhibits the function of acidic vesicles, also diminished cellular toxicity. Staining with the cholesterol binding dye filipin revealed that the macrophages treated with CP-113,818 contained a cholesterol oxidase accessible pool of FC in the plasma membrane. These results suggest that FC generated by the hydrolysis of cytoplasmic CE is transported through acidic vesicles to the plasma membrane, and accumulation of FC in this pool triggers cell death by necrosis and apoptosis.
Keywords :
Hydrolysis , plasma membrane , Cytoplasmic cholesteryl ester , Foam cell , Cytotoxic cholesterol