• Title of article

    From data to knowledge mining

  • Author/Authors

    BICHARRA GARCIA، ANA CRISTINA نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    15
  • From page
    427
  • To page
    441
  • Abstract
    Most past approaches to data mining have been based on association rules. However, the simple application of association rules usually only changes the user’s problem from dealing with millions of data points to dealing with thousands of rules. Although this may somewhat reduce the scale of the problem, it is not a completely satisfactory solution. This paper presents a new data mining technique, called knowledge cohesion (KC), which takes into account a domain ontology and the user’s interest in exploring certain data sets to extract knowledge, in the form of semantic nets, from large data sets. The KC method has been successfully applied to mine causal relations from oil platform accident reports. In a comparison with association rule techniques for the same domain, KC has shown a significant improvement in the extraction of relevant knowledge, using processing complexity and knowledge manageability as the evaluation criteria
  • Keywords
    DATA MINING , Knowledge Cohesion , Sense making , Text Mining , Ontology
  • Journal title
    AI EDAM
  • Serial Year
    2009
  • Journal title
    AI EDAM
  • Record number

    650409