Title of article :
AN EIGENVALUE PROBLEM INVOLVING A FUNCTIONAL DIFFERENTIAL EQUATION ARISING IN A CELL GROWTH MODEL
Author/Authors :
VAN BRUN، BRUCE نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
11
From page :
383
To page :
393
Abstract :
We interpret a boundary-value problem arising in a cell growth model as a singular Sturm–Liouville problem that involves a functional differential equation of the pantograph type. We show that the probability density function of the cell growth model corresponds to the first eigenvalue and that there is a family of rapidly decaying eigenfunctions.
Keywords :
cell growth model , Pantograph equations
Journal title :
The ANZIAM Journal
Serial Year :
2009
Journal title :
The ANZIAM Journal
Record number :
650570
Link To Document :
بازگشت