Title of article :
Comparison of Artificial Neural Network with Logistic Regression as Classification Models for Variable Selection for Predict ion of Breast Cancer Patient Outcomes
Author/Authors :
Valerie Bourdes، نويسنده , , Stéphane Bonnevay، نويسنده , , Paolo Lisboa ، نويسنده , , Remy Defrance، نويسنده , , David Perol، نويسنده , , Sylvie Chabaud، نويسنده , , Thomas Bachelot، نويسنده , , Therese Gargi، نويسنده , , and Sylvie Negrier، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
The aim of this study was to compare multilayer p ercept ron n eu r al n etwor ks ( NNs) w ith s tandard log i stic re g ression (LR) toidentify ke y cov ar iates impacting on mor t alit y f rom cancer causes, disease-free sur v iv al (DFS), and disease recur rence usingArea Un der Receiver- Op er ating Char acter i stics ( AURO C) in breast cancer p atients. From 1996 to 2004, 2,535 patients diag n osedw i th pr imar y breast cancer entered into t he study at a sing le French cent re, w here the y re ceived standard t reat ment. For specificmor t alit y as well as DFS analysis, t he RO C cur ves were g reater w i th the N N m odels compare d to L R m odel w i th better sensitiv it yand s pecificit y. Four predictive factors were retained by b oth appro aches for mor t alit y : clinical size stage, Scarff Bloom Richard song r ade, nu mber of invaded n odes, and progesterone re ceptor. T he results enhanced the rele v ance of the u se of NN models inpredictive analysis in oncolog y, w hich appeared to be more ac cur a te in prediction in this French breast c ancer cohor t.
Journal title :
Advances in Artificial Neural Systems
Journal title :
Advances in Artificial Neural Systems