• Title of article

    Invariant features comparison in hidden markov model and SIFT for offline handwritten signature database

  • Author/Authors

    Neeraj Shukla، نويسنده , , Madhu Shandilya، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    13
  • From page
    31
  • To page
    43
  • Abstract
    In Handwritten signatures analyzed for forgery have to undergo feature extraction process, due to varied samples in size rotation and intra-domain changes, invariance has to be achieved during feature extraction process; circular Hidden Markov Model with discrete radon transform approach of feature extraction provides invariance. On other hand Scale Invariant Feature Transform (SIFT) has inherent invariant feature extraction approach. This paper compares both approaches on common signature databases for False acceptance rate(FAR),False Rejection Rate(FRR) and Equal Error Rate(EER)
  • Keywords
    off-line , Discrete Radon Transform (DRT) , Signature forgery , Viterbi , Baum-Welch , Hidden Markov Model (HMM) TP True Positive FP False Positive FN False Negative TN True Negative FAR False Acceptance Rate HMM Hidden Markov Model NN Neural Networks SIFT Sca
  • Journal title
    International Journal of Computer Applications
  • Serial Year
    2010
  • Journal title
    International Journal of Computer Applications
  • Record number

    659751