Author/Authors :
Botta، Mauro نويسنده , , OSullivan، Brendon نويسنده , , Doble، Dan M. J. نويسنده , , Thompson، Malon K. نويسنده , , Siering، Carsten نويسنده , , Xu، Jide نويسنده , , Aime.s، Silvio نويسنده , , Raymond، Kenneth N. نويسنده ,
Abstract :
The variation of the size of the capping scaffold which connects the hydroxypyridonate (HOPO) binding units in a series of tripodal chelators for gadolinium (Gd) complexes has been investigated. A new analogue of TREN-1Me-3,2-HOPO (1) (TREN = tri(ethylamine)amine) was synthesized: TREN-Gly-1-Me-3,2-HOPO (2) features a glycine spacer between the TREN cap and HOPO binding unit. TRPN-1-Me-3,2-HOPO (3) has a propylene-bridged cap, as compared to the ethylene bridges within the TREN cap of the parent complex. Thermodynamic equilibrium constants for the acid-base properties of 2 and the Gd^3+ complexation strength of 2 and 3 were measured and are compared with that of the parent ligand. The most basic ligand is 2 while 3 is the most acidic. Both 2 and 3 form Gd^3+ complexes of similar stability (pGd = 16.7 and 15.6, respectively) and are less stable than the parent complex Gd-1 (pGd = 19.2). Two of the three complexes are more stable than the bis(methylamide)diethylenetriamine pentaacetate complex Gd(DTPA-BMA) (pGd = 15.7) while the other is of comparable stability. Enlargement of the ligand scaffold decreases the stability of the Gd^3+ complexes and indicates that the TREN scaffold is superior to the TRPN and TREN-Gly scaffolds. The proton relaxivity of Gd-2 is 6.6 mM^-1 s-^-1 (20 MHz, 25 °C, pH 7.3), somewhat lower than the parent Gd-1 but higher than that of the MRI contrast agents in clinical practice. The pH-independent relaxivity of Gd-2 is uncharacteristic of this family of complexes and is discussed.