Title of article :
A GAME THEORETICAL APPROACHTO THE ALGEBRAIC COUNTERPARTOF THE WAGNER HIERARCHY: PART I
Author/Authors :
Jeremie Cabessa and Jacques Duparc، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
19
From page :
443
To page :
461
Abstract :
The algebraic study of formal languages shows that ω-rational sets correspond precisely to the ω-languages recognizable byfinite ω-semigroups. Within this framework, we provide a constructionof the algebraic counterpart of the Wagner hierarchy. We adopta hierarchical game approach, by translating the Wadge theory fromthe ω-rational language to the ω-semigroup context. More precisely,we first show that the Wagner degree is indeed a syntactic invariant.We then define a reduction relation on finite pointed ω-semigroups bymeans of a Wadge-like infinite two-player game. The collection of thesealgebraic structures ordered by this reduction is then proven to be isomorphicto the Wagner hierarchy, namely a well-founded and decidablepartial ordering of width 2 and height ωω
Keywords :
?-rational languages , Wagner hierarchy , ?-semigroups , Wadge hierarchy , hierarchicalgames , infinite games , Wadge game , ?-automata
Journal title :
RAIRO - Theoretical Informatics and Applications
Serial Year :
2009
Journal title :
RAIRO - Theoretical Informatics and Applications
Record number :
666023
Link To Document :
بازگشت