Title of article :
A GAME THEORETICAL APPROACHTO THE ALGEBRAIC COUNTERPARTOF THE WAGNER HIERARCHY: PART II
Author/Authors :
Jeremie Cabessa and Jacques Duparc، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
53
From page :
463
To page :
515
Abstract :
The algebraic counterpart of the Wagner hierarchy consistsof a well-founded and decidable classification of finite pointedω-semigroups of width 2 and height ωω. This paper completes thedescription of this algebraic hierarchy. We first give a purely algebraicdecidability procedure of this partial ordering by introducing a graphrepresentation of finite pointed ω-semigroups allowing to compute theirprecise Wagner degrees. The Wagner degree of any ω-rational languagecan therefore be computed directly on its syntactic image. We thenshow how to build a finite pointed ω-semigroup of any given Wagnerdegree. We finally describe the algebraic invariants characterizing everydegree of this hierarchy
Keywords :
Wagner hierarchy , ?-rational languages , ?-semigroups , infinite games , hierarchicalgames , Wadge game , Wadge hierarchy , ?-automata
Journal title :
RAIRO - Theoretical Informatics and Applications
Serial Year :
2009
Journal title :
RAIRO - Theoretical Informatics and Applications
Record number :
666024
Link To Document :
بازگشت