Title of article :
Prediction of Time Series Using RBF Neural Networks: A New Approach of Clustering
Author/Authors :
Mohammed Mohammed Awad، نويسنده , , Hector Pomares، نويسنده , , Ignacio Rojas، نويسنده , , Osama Salameh and Mai Hamdon، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
7
From page :
138
To page :
144
Abstract :
In this paper, we deal with the problem of time series prediction from a given set of input/output data. This problemconsists of the prediction of future values based on past and/or present data. We present a new method for prediction of timeseries data using radial basis functions. This approach is based on a new efficient method of clustering of the centers of theradial basis function neural network; it uses the error committed in every cluster using the real output of the radial basisfunction neural network trying to concentrate more clusters in those input regions where the error is bigger and move theclusters instead of just the input values of the I/O data. This method of clustering, improves the performance of the time seriesprediction system obtained, compared with other methods derived from traditional algorithms
Keywords :
Clustering , Time series prediction , RBF neural networks
Journal title :
The International Arab Journal of Information Technology (IAJIT)
Serial Year :
2009
Journal title :
The International Arab Journal of Information Technology (IAJIT)
Record number :
668765
Link To Document :
بازگشت