Title of article :
Slow Electron Transfer Rates for Fluorinated Cobalt Porphyrins: Electronic and Conformational Factors Modulating Metalloporphyrin ET
Author/Authors :
Sun، Haoran نويسنده , , DiMagno، Stephen G. نويسنده , , Smirnov، Valeriy V. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-6031
From page :
6032
To page :
0
Abstract :
[2,3,7,8,12,13,17,18-octafluoro-5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato]cobalt, CoF28TPP, [2,3,7,8,12,13,17,18-octafluoro-5,10,15,20tetraphenyl)porphyrinato]cobalt, CoF8TPP, 5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato]cobalt, CoF20TPP, and [5,10,15,20tetraphenylporphyrinato]cobalt, CoTPP, were investigated by cyclic voltammetry, cyclic voltammetric digital simulation, in situ UV-vis and IR spectroelectrochemistry, kinetic ET studies, bulk electrolysis, 19F NMR spectroscopy, X-ray crystallography, and molecular modeling. In benzonitrile containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6) as supporting electrolyte, the ET rate constants for the Co2+/3+ redox couples were found to be strongly substituent dependent; the heterogeneous ET rate constant (kel) varied by a factor of 104, and the ET self-exchange rate constants (kex) varied over 7 orders of magnitude for the compounds studied. The remaining observed ring oxidation and metal and ring reduction events exhibited nearly identical kel values for all compounds. UV-vis and IR spectroelectrochemistry, bulk electrolysis, and 19F NMR spectroscopic studies support attribution of different ET rates to widely varying inner sphere reorganization energies ((lambda)i) for these closely related compounds. Structural and semiempirical (PM3) studies indicate that the divergent kinetic behavior of CoTPP, CoF8TPP, CoF20TPP, and CoF28TPP first oxidations arises mainly from large nuclear reorganization energies primarily associated with core contraction and dilation. Taken together, these studies provide rational design principles for modulating ET rate constants in cobalt porphyrins over an even larger range and provide strategies for similar manipulation of ET rates in other porphyrin-based systems: substituents that lower C-C, C-N, and N-M vibrational frequencies or minimize porphyrin orbital overlap with the metal-centered orbital undergoing a change in electron population will increase kET. The heme ruffling apparent in electron transfer proteins such as cytochrome c is interpreted as natureʹs exploitation of this design strategy.
Keywords :
Oscillations , Methane oxidation , Complete oxidation , Partial oxidation , Metal catalysts
Journal title :
INORGANIC CHEMISTRY
Serial Year :
2003
Journal title :
INORGANIC CHEMISTRY
Record number :
67200
Link To Document :
بازگشت