Title of article :
UNFOLDING FINITIST ARITHMETIC
Author/Authors :
SOLOMON FEFERMAN، نويسنده , , Thomas Strahm، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
25
From page :
665
To page :
689
Abstract :
The concept of the (full) unfolding U (S) of a schematic system S is used to answer the following question: Which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted S? The program to determine U(S) for various systems S of foundational significance was previously carried out for a system of nonfinitist arithmetic, NFA; it was shown that U(NFA) is proof-theoretically equivalent to predicative analysis. In the present paper we work out the unfolding notions for a basic schematic system of finitist arithmetic, FA, and for an extension of that by a form BR of the so-called Bar Rule. It is shown that U(FA) and U(FA + BR) are proof-theoretically equivalent, respectively, to Primitive Recursive Arithmetic, PRA, and to Peano Arithmetic, PA.
Journal title :
The Review of Symbolic Logic
Serial Year :
2010
Journal title :
The Review of Symbolic Logic
Record number :
679040
Link To Document :
بازگشت