Title of article :
Improving Anomaly Detection for Text-Based Protocols by Exploiting Message Structures
Author/Authors :
Martin Guthle ، نويسنده , , Jochen Kogel، نويسنده , , StefanWahl ، نويسنده , , Matthias Kaschub and Christian M. Mueller، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
8
From page :
662
To page :
669
Abstract :
Service platforms using text-based protocols need to be protected against attacks. Machine-learning algorithms with pattern matching can be used to detect even previously unknown attacks. In this paper, we present an extension to known Support Vector Machine (SVM) based anomaly detection algorithms for the Session Initiation Protocol (SIP). Our contribution is to extend the amount of different features used for classification (feature space) by exploiting the structure of SIP messages, which reduces the false positive rate. Additionally, we show how combining our approach with attribute reduction significantly improves throughput.
Keywords :
SIp , anomaly detection , classification , text-based protocols , SVM
Journal title :
Future Internet
Serial Year :
2010
Journal title :
Future Internet
Record number :
679555
Link To Document :
بازگشت