Title of article :
FUZZY-RULE-BASED APPROACH FOR MODELING SENSORY ACCEPTABITITY OF FOOD PRODUCTS
Author/Authors :
Olusegun Folorunso ، نويسنده , , Yinka Ajayi ، نويسنده , , and Taofik Shittu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
The prediction of product acceptability is often an additive effect of individual fuzzy impressions developed by a consumer on certain underlying attributes characteristic of the product. In this paper, we present the development of a data-driven fuzzy-rule-based approach for predicting the overall sensory acceptability of food products, in this case composite cassava-wheat bread. The model was formulated using the Takagi-Sugeno and Kang (TSK) fuzzy modeling approach. Experiments with the model derived from sampled data were simulated on Windows 2000XP running on Intel 2Gh environment. The fuzzy membership function for the sensory scores is implemented in MATLAB 6.0 using the fuzzy logic toolkit, and weights of each linguistic attribute were obtained using a Correlation Coefficient formula. The results obtained are compared to those of human judgments. Overall assessments suggest that, if implemented, this approach will facilitate a better acceptability of composite bread.
Keywords :
Fuzzy-Rule , sensory analysis , Composite cassava wheat (CCW) bread , Food product
Journal title :
Data Science Journal
Journal title :
Data Science Journal