Title of article :
A New Markov Random Field Segmentation Method for Breast Lesion Segmentation in MR Images
Author/Authors :
Azmi، reza نويسنده Faculty of Engineering and Technology , , norozi، narges نويسنده Faculty of Engineering and Technology ,
Issue Information :
فصلنامه با شماره پیاپی 0 سال 2011
Pages :
9
From page :
156
To page :
164
Abstract :
Breast cancer is a major public health problem for women in the Iran and many other parts of the world. Dynamic contrast?enhanced magnetic resonance imaging plays a pivotal role in breast cancer care, including detection, diagnosis, and treatment monitoring. But segmentation of these images, which is seriously affected by intensity inhomogeneities created by radio?frequency coils, is a challenging task. Markov Random Field (MRF) is used widely in medical image segmentation, especially in MR images. It is because this method can model intensity inhomogeneities occurring in these images. But this method has two critical weaknesses: Computational complexity and sensitivity of the results to the models parameters. To overcome these problems, in this paper, we present Improved?Markov Random Field (I?MRF) method for breast lesion segmentation in MR images. Unlike the conventional MRF, in the proposed approach, we don’t use the Iterative Conditional Mode method or Simulated Annealing for class membership estimation of each pixel (lesion and non?lesion). The prior distribution of the class membership is modeled as a ratio of two conditional probability distributions in a neighborhood which is defined for each pixel: Probability distribution of similar pixels and non?similar ones. Since our proposed approach don’t use an iterative method for maximizing the posterior probability, above mentioned problems are solved. Experimental results show that performance of segmentation in this approach is higher than conventional MRF in terms of accuracy, precision, and Computational complexity.
Journal title :
Journal of Medical Signals and Sensors (JMSS)
Serial Year :
2011
Journal title :
Journal of Medical Signals and Sensors (JMSS)
Record number :
680882
Link To Document :
بازگشت