Title of article :
The Hyper-Wiener Polynomial of Graphs
Author/Authors :
Fath-Tabar، G. H. نويسنده Department of Mathematics , , Ashrafi، A. R. نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2011
Abstract :
The distance $d(u,v)$ between two vertices $u$ and $v$ of a graph
$G$ is equal to the length of a shortest path that connects $u$
and $v$. Define $WW(G,x) = 1/2\sum_{\{ a,b \} \subseteq
V(G)}x^{d(a,b) + d^2(a,b)}$, where $d(G)$ is the greatest
distance between any two vertices. In this paper the hyper-Wiener
polynomials of the Cartesian product, composition, join and
disjunction of graphs are computed.
Journal title :
Iranian Journal of Mathematical Sciences and Informatics (IJMSI)
Journal title :
Iranian Journal of Mathematical Sciences and Informatics (IJMSI)