Title of article :
SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
Author/Authors :
Mojtaba Eftekhari، Mojtaba Eftekhari نويسنده Mojtaba Eftekhari, Mojtaba Eftekhari , Mahdi Eftekhari، Mahdi Eftekhari نويسنده Mahdi Eftekhari, Mahdi Eftekhari , Maryam Majidi، Maryam Majidi نويسنده Maryam Majidi, Maryam Majidi , Hossein Nezamabadi pour، Hossein Nezamabadi pour نويسنده Hossein Nezamabadi pour, Hossein Nezamabadi pour
Issue Information :
دوفصلنامه با شماره پیاپی 0 سال 2012
Pages :
17
From page :
61
To page :
77
Abstract :
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identification, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level interpretability requirements of fuzzy models is especially a complicated task in case of modeling nonlinear MIMO systems. Due to these multiple and con icting objectives, MOGA is applied to yield a set of candidates as compact, transparent and valid fuzzy models. Also, MOGA is combined with a powerful search algorithm namely Di erential Evolution (DE). In the proposed algorithm, MOGA performs the task of membership function tuning as well as rule base identification simultaneously while DE is utilized only for linear parameter identification. Practical applicability of the proposed algorithm is examined by two nonlinear system modeling prob- lems used in the literature. The results obtained show the e ectiveness of the proposed method.
Journal title :
Iranian Journal of Fuzzy Systems (IJFS)
Serial Year :
2012
Journal title :
Iranian Journal of Fuzzy Systems (IJFS)
Record number :
682133
Link To Document :
بازگشت