Title of article :
k-TUPLE TOTAL DOMINATION AND MYCIELESKIAN GRAPHS
Author/Authors :
كاظمي، عادل پ نويسنده Kazemi, Adel P
Issue Information :
ماهنامه با شماره پیاپی 0 سال 2012
Pages :
7
From page :
7
To page :
13
Abstract :
Abstract. Let k be a positive integer. A subset S of V (G) in a graph G is a k-tuple total dominating set of G if every vertex of G has at least k neighbors in S. The k-tuple total domination number ?_(×k,t)(G) of G is the minimum cardinality of a k-tuple total dominating set of G. In this paper for a given graph G with minimum degree at least k, we find some sharp lower and upper bounds on the k-tuple total domination number of the m-Mycieleskian graph ?_(m)(G) of G in terms on k and ?_(×k,t) (G). Specially we give the sharp bounds ?_(×k,t) (G)+1 and ?_(×k,t) (G)+k for ?_(×k,t) (?_1 (G)), and characterize graphs with ?_(×k,t) (?_1 (G))=?_(×k,t)(G)+1.
Journal title :
Transactions on Combinatorics
Serial Year :
2012
Journal title :
Transactions on Combinatorics
Record number :
682315
Link To Document :
بازگشت