Title of article :
Automatic training method applied to a WiFi+ultrasound POMDP navigation system
Author/Authors :
M. Ocana، نويسنده , , L. M. Bergasa، نويسنده , , M. A. Sotelo، نويسنده , , R. Flores، نويسنده , , D. F. Llorca and D. Schleicher، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2009
Pages :
13
From page :
1049
To page :
1061
Abstract :
This paper presents an automatic training method based on the Baum-Welch algorithm (also known as EM algorithm) and a robust low-level controller. The method has been applied to the indoor autonomous navigation of a surveillance robot that utilizes a WiFi+Ultrasound Partially Observable Markov Decision Process (POMDP). This method uses a robust local navigation system to automatically provide some WiFi+Ultrasound maps. These maps could be employed within probabilistic global robot localization systems. These systems use a priori probabilistic map in order to estimate the global robot position. The method has been tested in a real environment using two commercial Pioneer 2AT robotic platforms in the premises of the Department of Electronics at the University of Alcala. Some experimental results and conclusions are presented.
Keywords :
WiFi signal strength localization system , Partially Observable Markov Decision Process. , WiFi+Ultrasound robot navigation system
Journal title :
Robotica
Serial Year :
2009
Journal title :
Robotica
Record number :
683720
Link To Document :
بازگشت