Title of article :
Rapid thermodynamic simulation model for optimum performance of a four-stroke, direct-injection, and variable-compression-ratio diesel engine
Author/Authors :
M Abou Al-Sood، Maher نويسنده , , Ahmed، Mahmoud نويسنده , , M Abdel-Rahim، Yousef نويسنده ,
Issue Information :
فصلنامه با شماره پیاپی 0 سال 2012
Abstract :
A thermodynamic simulation model for the performance of a four-stroke, direct-injection diesel engine is
developed. The simulation model includes detailed sub-models for fuel burning rate, combustion products,
thermodynamic properties of working fluid, heat transfer, fluid flow, and both soot and oxides of nitrogen (NOx)
formation mechanisms. To validate the model, comparisons between experimental and predicted results for
different engines, operating under different conditions, were conducted. The comparisons show that there is a
good concurrence between measured and predicted values. An optimization analysis is conducted for seeking an
optimum variation of compression ratio to achieve pre-set objective targets such as constant minimum
brake-specific fuel consumption and constant maximum torque. The optimization analysis is performed under the
constraint that the maximum pressure and temperature inside the cylinder do not exceed the maximum allowable
pressure and temperature of the conventional engine (constant compression ratio).The varying compression ratio is
optimized with each of the previous conditions separately. Results indicated that varying the compression ratio to
achieve previous targets leads to saving fuel consumption, higher brake efficiency and power, and reduction in
soot emission from the engine. Also, an increase in NOx is noticed at low speed. This drawback is considerable and
can be overcome by reducing the operation speed range.
Journal title :
International Journal of Energy and Environmental Engineering (IJEEE)
Journal title :
International Journal of Energy and Environmental Engineering (IJEEE)