Title of article :
Comparison of different methods of parameters estimation for Pareto Model
Author/Authors :
مونير، ريزوان نويسنده Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan Munir, Rizwan , سالم، محمد نويسنده دانشگاه علوم پزشكي بقيه الله (عج),دانشكده بهداشت salem, mohammad , اسلام، محمد نويسنده Aslam, Muhammad , علي، ساچيد نويسنده Department of Decision Sciences, Bocconi University Milan, Italy. Ali, Sajid
Issue Information :
روزنامه با شماره پیاپی 0 سال 2013
Abstract :
In this study, the scale and the shape parameters of the Pareto Distribution have been estimated using five different estimation techniques, namely Method of Moments, Maximum Likelihood Estimation, Fractional Moments, Probability Weighted Moments and Bayesian method. As a single choice of sample size and parameter point do not help to clarify performance of the methods, so different parameter points and different sample sizes are used. An extensive Monte Carlo simulation study has been conducted to investigate the performance of the estimators. The WinBUGS and R-Language are used to deal with numerical computations of estimates of parameters of Pareto distribution. The Bayesian method exhibits the minimum standard error with some exceptions.
Journal title :
Caspian Journal of Applied Sciences Research
Journal title :
Caspian Journal of Applied Sciences Research