Title of article :
Three-step iterative methods with eighth-order convergence for solving nonlinear equations
Author/Authors :
Matinfar، M. نويسنده , , Aminzadeh، M. A. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
11
From page :
1
To page :
11
Abstract :
A family of eighth-order iterative methods for solution of nonlinear equations is presented. We propose an optimal three-step method with eight-order convergence for finding the simple roots of nonlinear equations by Hermite interpolation method. Per iteration of this method requires two evaluations of the function and two evaluations of its first derivative, which implies that the efficiency index of the developed methods is 1.682. Some numerical examples illustrate that the algorithms are more efficient and performs better than the other methods.
Journal title :
Journal of Interpolation and Approximation in Scientific Computing
Serial Year :
2013
Journal title :
Journal of Interpolation and Approximation in Scientific Computing
Record number :
691340
Link To Document :
بازگشت