Title of article :
On the Nilpotent Length of Polycyclic Groups
Author/Authors :
Gérard Endimioni، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
9
From page :
125
To page :
133
Abstract :
LetGbe a polycyclic group. We prove that if the nilpotent length of each finite quotient ofGis bounded by a fixed integern, then the nilpotent length ofGis at mostn. The casen = 1 is a well-known result of Hirsch. As a consequence, we obtain that if the nilpotent length of each 2-generator subgroup is at mostn, then the nilpotent length ofGis at mostn. A more precise result in the casen = 2 permits us to prove that if each 3-generator subgroup is abelian-by-nilpotent, thenGis abelian-by-nilpotent. Furthermore, we show that the nilpotent length ofGequals the nilpotent length of the quotient ofGby its Frattini subgroup.
Journal title :
Journal of Algebra
Serial Year :
1998
Journal title :
Journal of Algebra
Record number :
694135
Link To Document :
بازگشت