Title of article :
The Minimum Number of Idempotent Generators of an Upper Triangular Matrix Algebra
Author/Authors :
A. V. Kelarev، نويسنده , , A. B. van der Merwe، نويسنده , , S. L. Van Wyk، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
12
From page :
605
To page :
616
Abstract :
We prove that the minimum number ν = ν( m(R)) such that them × mupper triangular matrix algebra m(R) over an arbitrary commutative ringRcan be generated as anR-algebra by ν idempotents, is given by In order to prove the result mentioned above, we show that ν(R(m)) = log2 m for everym ≥ 2, whereR(m)denotes the direct sum ofmcopies ofR. The latter result corrects an error by N. Krupnik (Comm. Algebra20, 1992, 3251–3257).
Journal title :
Journal of Algebra
Serial Year :
1998
Journal title :
Journal of Algebra
Record number :
694228
Link To Document :
بازگشت