Title of article :
P.I. Algebras with Hopf Algebra Actions,
Author/Authors :
Allan Berele and Yuval Roichman، نويسنده , , Jeffrey Bergen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
16
From page :
636
To page :
651
Abstract :
IfAis a p.i. algebra in characteristic zero with action from a finite-dimensional semisimple Hopf algebraH, thenAhas a nilpotentH-idealNsuch thatA/Nwill beH-verbally semiprime. EveryH-verbally semiprime algebra isH-p.i. equivalent to a direct sum ofH-verbally prime algebras. In the case of a finite group action or a grading by an abelian group, we show that the sum can be taken to be finite. In the case of an action by a finite cyclic groupG, we classify allG-p.i. algebras, up to equivalence. This paper generalizes the work of A. R. Kerner (1985,Math. USSR Izv.25).
Keywords :
verbally prime , verbally semiprime , p.i. algebra , Group action , Hopf algebra action , group grading
Journal title :
Journal of Algebra
Serial Year :
1999
Journal title :
Journal of Algebra
Record number :
694527
Link To Document :
بازگشت