Title of article :
On the Number of Absolutely Indecomposable Representations of a Quiver
Author/Authors :
Bert Sevenhant، نويسنده , , Michel van den Bergh، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Abstract :
A conjecture of Kac states that the constant coefficient of the polynomial counting the number of absolutely indecomposable representations of a quiver over a finite field is equal to the multiplicity of the corresponding root in the associated Kac–Moody Lie algebra. In this paper we give a combinatorial reformulation of Kacʹs conjecture in terms of a property of q-multinomial coefficients. As a side result we give a formula for certain inverse Kostka–Foulkes polynomials.
Keywords :
Hall algebra , Symmetric functions
Journal title :
Journal of Algebra
Journal title :
Journal of Algebra