Title of article :
Generic 2 × 2 matrices in positive characteristic
Author/Authors :
Tihomir Asparouhov، نويسنده , , Francesca Benanti and Vesselin Drensky، نويسنده , , Plamen Koev، نويسنده , , Dimitar Tsiganchev، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
36
From page :
451
To page :
486
Abstract :
Let Rm(K) be the K-algebra generated by the generic 2 × 2 matrices y1, …, ym over a unitary commutative associative ring K. Our main result is that, with a small class of exceptions, for m a positive integer and p a prime, the kernel of the natural homomorphism Rm( ) → Rm( p) coincides with pRm( ). The only exceptions are for m ≥ 5 and p = 2 when we give an explicit multilinear polynomial identity of degree 5 for the matrix algebra M2( 2) which does not follow from the spolynomial identities of M2( 2). This improves on Schelterʹs construction of a non-multilinear identity of this sort of degree 6, and Drensky and Tsiganchevʹs existence result for a multilinear identity such as we have found
Keywords :
algebras with polynomial identity , generic matrices
Journal title :
Journal of Algebra
Serial Year :
2000
Journal title :
Journal of Algebra
Record number :
694890
Link To Document :
بازگشت