• Title of article

    Zeta Functions of Discrete Groups Acting on Trees

  • Author/Authors

    Bryan Clair، نويسنده , , Shahriar Mokhtari-Sharghi، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2001
  • Pages
    30
  • From page
    591
  • To page
    620
  • Abstract
    This paper generalizes Bassʹ work on zeta functions for uniform tree lattices. Using the theory of von Neumann algebras, machinery is developed to define the zeta function of a discrete group of automorphisms of a bounded degree tree. The main theorems relate the zeta function to determinants of operators defined on edges or vertices of the tree. A zeta function associated to a non-uniform tree lattice with appropriate Hilbert representation is defined. Zeta functions are defined for infinite graphs with a cocompact or finite covolume group action.
  • Keywords
    tree lattice , Von Neumann algebra , zeta function
  • Journal title
    Journal of Algebra
  • Serial Year
    2001
  • Journal title
    Journal of Algebra
  • Record number

    695366