Title of article :
On Core-2 Groups
Author/Authors :
Giovanni Cutolo، نويسنده , , Howard Smith، نويسنده , , James Wiegold، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
A group G is core-2 if and only if H/HG ≤ 2 for every H ≤ G. We prove that every core-2 nilpotent 2-group of class 2 has an abelian subgroup of index at most 4. This bound is the best possible. As a consequence, every 2-group satisfying the property core-2 has an abelian subgroup of index at most 16.
Keywords :
finite 2-groups , Normal subgroups , Breadth , normal core
Journal title :
Journal of Algebra
Journal title :
Journal of Algebra