Title of article :
Right 2-Engel Elements and Commuting Automorphisms of Groups
Author/Authors :
Marian Deaconescu، نويسنده , , Gary L. Walls، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
It is shown that there is a close connection between the right 2-Engel elements of a group and the set of the so-called commuting automorphisms of the group. As a consequence, the following general theorem is proved: If G is a group and if R2(G) denotes the subgroup of right 2-Engel elements, then the factor group R2(G) ∩ CG(G′)/Z2(G) is a group of exponent at most 2.
Keywords :
central automorphisms , right 2-Engel elements , commuting automorphisms
Journal title :
Journal of Algebra
Journal title :
Journal of Algebra