Title of article :
Function Field Theory of Plane Curves by Dual Curves
Author/Authors :
Hisao Yoshihara، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
16
From page :
340
To page :
355
Abstract :
We study the structure of function fields of plane curves following our method developed previously (K. Miura and H. Yoshihara, 2000, J. Algebra226, 283–294). Let K be the function field of a smooth plane curve C of degree d ( ≥ 4) and let KP be a maximal rational subfield of K for P 2. We study the field extension K/KP from a geometrical viewpoint. Especially, we give a sufficient condition that the Galois group of the Galois closure of K/KP becomes a full symmetric group.
Keywords :
smooth plane curve , function field , maximal rational subfield , Galois point , minimal splitting curve
Journal title :
Journal of Algebra
Serial Year :
2001
Journal title :
Journal of Algebra
Record number :
695435
Link To Document :
بازگشت