Title of article :
Triangular Derivations of k[X1, X2, X3, X4]
Author/Authors :
Daniel Daigle، نويسنده , , Gene Freudenburg، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
12
From page :
328
To page :
339
Abstract :
It is shown that if k is a field of characteristic zero, then the kernel of any triangular k-derivation of k[X1, X2, X3, X4] is finitely generated as a k-algebra. This is obtained as a corollary of a more general result concerning triangular R-derivations of R[X, Y, Z] for certain rings R.
Keywords :
Derivations , Hilbert fourteenth problem , additive group actions , invariants
Journal title :
Journal of Algebra
Serial Year :
2001
Journal title :
Journal of Algebra
Record number :
695505
Link To Document :
بازگشت