Title of article :
Hecke algebras, Specht modules and Gröbner–Shirshov bases
Author/Authors :
Seok-Jin Kang ، نويسنده , , In-Sok Lee، نويسنده , , Kyu Hwan Lee، نويسنده , , Hyekyung Oh، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
35
From page :
258
To page :
292
Abstract :
In this paper, we study the structure of Specht modules over Hecke algebras using the Gröbner–Shirshov basis theory for the representations of associative algebras. The Gröbner–Shirshov basis theory enables us to construct Specht modules in terms of generators and relations. Given a Specht module Sqλ, we determine the Gröbner–Shirshov pair and the monomial basis G(λ) consisting of standard monomials. We show that the monomials in G(λ) can be parameterized by the cozy tableaux. Using the division algorithm together with the monomial basis G(λ), we obtain a recursive algorithm of computing the Gram matrices. We discuss its applications to several interesting examples including Temperley–Lieb algebras.
Journal title :
Journal of Algebra
Serial Year :
2002
Journal title :
Journal of Algebra
Record number :
695916
Link To Document :
بازگشت