Title of article :
Maximal Cohen–Macaulay modules over the cone of an elliptic curve
Author/Authors :
Radu Laza، نويسنده , , Gerhard Pfister، نويسنده , , Dorin Popescu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
28
From page :
209
To page :
236
Abstract :
Let R=k[Y1,Y2,Y3]/(f), f=Y13+Y23+Y33, where k is an algebraically closed field with chark≠3. Using Atiyah bundle classification over elliptic curves we describe the matrix factorizations of the graded, indecomposable reflexive R-modules, equivalently we describe explicitly the indecomposable bundles over the projective curve . Using the fact that over the completion of R every reflexive module is gradable, we obtain a description of the maximal Cohen–Macaulay modules over .
Journal title :
Journal of Algebra
Serial Year :
2002
Journal title :
Journal of Algebra
Record number :
695934
Link To Document :
بازگشت