Title of article :
On the length of generalized fractions
Author/Authors :
Nguyen Tu Cuong، نويسنده , , Marcel Morales، نويسنده , , Le Thanh Nhan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
14
From page :
100
To page :
113
Abstract :
Let M be a finitely generated module over a Noetherian local ring with dimM=d. Let (x1,…,xd) be a system of parameters of M and (n1,…,nd) a set of positive integers. Consider the length of generalized fraction 1/(x1n1,…,xdnd,1) as a function in n1,…,nd. Sharp and Hamieh [J. Pure Appl. Algebra 38 (1985) 323–336] asked whether this function is a polynomial for n1,…,nd large enough. In this paper, we will give counterexamples to this question. We also study conditions on the system of parameters in order to show that the length of the generalized fraction 1/(x1n1,…,xdnd,1) is not a polynomial for n1,…,nd large enough.
Keywords :
multiplicity , Generalized fractions , Noetherian , Local cohomology , Artinian
Journal title :
Journal of Algebra
Serial Year :
2003
Journal title :
Journal of Algebra
Record number :
696247
Link To Document :
بازگشت