Abstract :
In one of his last papers, Boris Weisfeiler proved that if modular semisimple Lie algebra possesses a solvable maximal subalgebra which defines in it a long filtration, then associated graded algebra is isomorphic to one constructed from the Zassenhaus algebra tensored with the divided powers algebra. We completely determine such class of algebras, calculating in process low-dimensional cohomology groups of Zassenhaus algebra tensored with any associative commutative algebra.