Title of article :
Decomposition of the lattice vertex operator algebra
Author/Authors :
Ching Hung Lam، نويسنده , , Hiromichi Yamada، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
11
From page :
614
To page :
624
Abstract :
Motivated by the work of Dong et al. [Associative subalgebras of Griess algebra and related topics, in: J. Ferrar, K. Harada (Eds.), Proc. Conf. Monster and Lie Algebras, de Gruyter, Berlin, 1998], we study a decomposition of the lattice vertex operator algebra as a direct sum of irreducible modules of a certain tensor product of Virasoro vertex operator algebras and a parafermion algebra Wl+1(2l/(l+3)). We find that the vertex operator algebra contains a subalgebra isomorphic to a parafermion algebra Wl+1(2l/(l+3)) of central charge 2l/(l+3). A complete decomposition of the vertex operator algebra as a direct sum of irreducible modules of , where ci, i=1,…,l, is given by the discrete series ci=1−6/(i+2)(i+3), is also obtained.
Journal title :
Journal of Algebra
Serial Year :
2004
Journal title :
Journal of Algebra
Record number :
696523
Link To Document :
بازگشت