• Title of article

    Zeta functions of integral representations of cyclic p-groups

  • Author/Authors

    Christian Wittmann، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2004
  • Pages
    38
  • From page
    271
  • To page
    308
  • Abstract
    For a prime number p and Cpk, the cyclic group of order pk, we consider the group ring over the p-adic integers. Following L. Solomon, one can define the zeta function of the free -module , which counts submodules of finite index in . In this article we develop a recursion formula (relating submodules of to certain submodules of ), which yields some new explicit formulas for the zeta function of in the cases k=1,2 and n 1, and k=3, n=1. An important combinatorial tool for these computations is the Möbius function of a partially ordered set.
  • Keywords
    Modules over group rings , Author Keywords: Zeta function , Integral representation , M?bius function
  • Journal title
    Journal of Algebra
  • Serial Year
    2004
  • Journal title
    Journal of Algebra
  • Record number

    696590