Title of article :
Equivalence classes of Vogan diagrams
Author/Authors :
Meng-Kiat Chuah، نويسنده , , Chu-Chin Hu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
16
From page :
22
To page :
37
Abstract :
A Vogan diagram is a Dynkin diagram with an involution, and the vertices fixed by the involution may be painted. They represent real simple Lie algebras, and two diagrams are said to be equivalent if they represent the same Lie algebra. In this article we classify the equivalence classes of all Vogan diagrams. In doing so, we find that the underlying Dynkin diagrams have certain properties in graph painting. We show that this combinatorial property provides an easy classification for most of the simply-laced Dynkin diagrams.
Keywords :
simple Lie algebra , Dynkin diagram , Graph painting , Vogan diagram
Journal title :
Journal of Algebra
Serial Year :
2004
Journal title :
Journal of Algebra
Record number :
696795
Link To Document :
بازگشت