Title of article :
Maximal algebras of Martindale-like quotients of strongly prime linear Jordan algebras
Author/Authors :
José A. Anquela، نويسنده , , Esther Garc?a، نويسنده , , Miguel G?mez-Lozano، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
17
From page :
367
To page :
383
Abstract :
In this paper we prove the existence and give precise descriptions of maximal algebras of Martindale like quotients for arbitrary strongly prime linear Jordan algebras. As a consequence, we show that Zelmanovʹs classification of strongly prime Jordan algebras can be viewed exactly as the description of their maximal algebras of Martindale-like quotients. As a side result, we show that the Martindale associative algebra of symmetric quotients can be expressed in terms of the symmetrized product, i.e., in purely Jordan terms.
Keywords :
Martindale associative algebra of quotients , Jordan algebra , Central extensions
Journal title :
Journal of Algebra
Serial Year :
2004
Journal title :
Journal of Algebra
Record number :
696862
Link To Document :
بازگشت