Title of article :
The Deligne–Simpson problem—a survey
Author/Authors :
Vladimir Petrov Kostov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
26
From page :
83
To page :
108
Abstract :
The Deligne–Simpson problem (DSP) (respectively the weak DSP) is formulated like this: give necessary and sufficient conditions for the choice of the conjugacy classes Cj GL(n,C) or cj gl(n,C) so that there exist irreducible (respectively with trivial centralizer) (p+1)-tuples of matrices Mj Cj or Aj cj satisfying the equality M1 Mp+1=I or A1+ +Ap+1=0. The matrices Mj and Aj are interpreted as monodromy operators of regular linear systems and as matrices-residua of Fuchsian ones on Riemannʹs sphere. The present paper offers a survey of the results known up to now concerning the DSP.
Keywords :
Generic eigenvalues , (Weak) Deligne–Simpson problem , Monodromy operator
Journal title :
Journal of Algebra
Serial Year :
2004
Journal title :
Journal of Algebra
Record number :
696893
Link To Document :
بازگشت