Title of article :
Almost split sequences for complexes of fixed size
Author/Authors :
Raymundo Bautista، نويسنده , , Maria Jose Souto Salorio، نويسنده , , Rita Zuazua، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
29
From page :
140
To page :
168
Abstract :
Let be an additive k-category, k a commutative artinian ring and n>1. We denote by the category of complexes in with Xi=0 if i {1,…,n}. We see that is endowed with a natural exact structure and its global dimension is at most n−1. In case is a dualizing category, we prove that has almost split sequences in the sense of [P. Dräxler, I. Reiten, S.O. Smalø, Ø. Solberg, Exact categories and vector space categories, with an appendix by B. Keller, Trans. Amer. Math. Soc. 351 (2) (1999) 647–682] or [R. Bautista, The category of morphisms between projective modules, Comm. Algebra 32 (11) (2004) 4303–4331]. If is the category of finitely generated projective Λ-modules (Λ an Artin algebra), we prove that the ends of an almost split sequence are related by an Auslander–Reiten translation functor which is defined in the most general category Cn(ProjΛ).
Journal title :
Journal of Algebra
Serial Year :
2005
Journal title :
Journal of Algebra
Record number :
697123
Link To Document :
بازگشت