• Title of article

    Compressed Drinfeld associators

  • Author/Authors

    V. Kurlin، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2005
  • Pages
    59
  • From page
    184
  • To page
    242
  • Abstract
    Drinfeld associator is a key tool in computing the Kontsevich integral of knots. A Drinfeld associator is a series in two non-commuting variables, satisfying highly complicated algebraic equations—hexagon and pentagon. The logarithm of a Drinfeld associator lives in the Lie algebra L generated by the symbols a,b,c modulo [a,b]=[b,c]=[c,a]. The main result is a description of compressed associators that obey the compressed pentagon and hexagon in the quotient L/[[L,L],[L,L]]. The key ingredient is an explicit form of Campbell–Baker–Hausdorff formula in the case when all commutators commute.
  • Keywords
    Chord diagrams , Vassiliev invariants , Compressed Vassiliev invariants , Drinfeld associator , Compressed associator , Zeta function , knot , Hexagon equation , Pentagon equation , Bernoulli numbers , Extended Bernoulli numbers , Campbell–Baker–Hausdorff formula , Lie algebra , Kontsevich integral
  • Journal title
    Journal of Algebra
  • Serial Year
    2005
  • Journal title
    Journal of Algebra
  • Record number

    697254