Title of article :
The Leavitt path algebra of a graph
Author/Authors :
Gene Abrams، نويسنده , , Gonzalo Aranda Pino، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
16
From page :
319
To page :
334
Abstract :
For any row-finite graph E and any field K we construct the Leavitt path algebra L(E) having coefficients in K. When K is the field of complex numbers, then L(E) is the algebraic analog of the Cuntz–Krieger algebra C*(E) described in [I. Raeburn, Graph algebras, in: CBMS Reg. Conf. Ser. Math., vol. 103, Amer. Math. Soc., 2005]. The matrix rings Mn(K) and the Leavitt algebras L(1,n) appear as algebras of the form L(E) for various graphs E. In our main result, we give necessary and sufficient conditions on E which imply that L(E) is simple.
Keywords :
Leavitt algebra , Path Algebra , Cuntz–Krieger C*-algebra
Journal title :
Journal of Algebra
Serial Year :
2005
Journal title :
Journal of Algebra
Record number :
697287
Link To Document :
بازگشت