• Title of article

    When is length a length function?

  • Author/Authors

    Gabriel Picavet، نويسنده , , Martine Picavet-LʹHermitte، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2005
  • Pages
    34
  • From page
    561
  • To page
    594
  • Abstract
    We show that ideal-length defines a length function on almost-Noetherian integral domains. This length function is a sum of multiplicities and in favourable cases, a linear combination on of discrete valuations. As a consequence, Σ1-Noetherian domains have length functions. Infra-Krull domains are weakly Krull almost-Noetherian domains. We characterize these integral domains and establish their properties, placing emphasis on integral closures and length functions. Descent properties are shown. Applications to the computation of elasticities and factorization properties are given
  • Keywords
    Weakly Krull domain , Weakly factorial domain , Elasticity , Cohen–Kaplansky domain , Ideal-length , Length function , Degree function , Almost-Noetherian domain , Infra-Krull domain , ?1-Noetherian domain
  • Journal title
    Journal of Algebra
  • Serial Year
    2005
  • Journal title
    Journal of Algebra
  • Record number

    697299