Title of article :
When is length a length function?
Author/Authors :
Gabriel Picavet، نويسنده , , Martine Picavet-LʹHermitte، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
34
From page :
561
To page :
594
Abstract :
We show that ideal-length defines a length function on almost-Noetherian integral domains. This length function is a sum of multiplicities and in favourable cases, a linear combination on of discrete valuations. As a consequence, Σ1-Noetherian domains have length functions. Infra-Krull domains are weakly Krull almost-Noetherian domains. We characterize these integral domains and establish their properties, placing emphasis on integral closures and length functions. Descent properties are shown. Applications to the computation of elasticities and factorization properties are given
Keywords :
Weakly Krull domain , Weakly factorial domain , Elasticity , Cohen–Kaplansky domain , Ideal-length , Length function , Degree function , Almost-Noetherian domain , Infra-Krull domain , ?1-Noetherian domain
Journal title :
Journal of Algebra
Serial Year :
2005
Journal title :
Journal of Algebra
Record number :
697299
Link To Document :
بازگشت