Title of article
When is length a length function?
Author/Authors
Gabriel Picavet، نويسنده , , Martine Picavet-LʹHermitte، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2005
Pages
34
From page
561
To page
594
Abstract
We show that ideal-length defines a length function on almost-Noetherian integral domains. This length function is a sum of multiplicities and in favourable cases, a linear combination on of discrete valuations. As a consequence, Σ1-Noetherian domains have length functions. Infra-Krull domains are weakly Krull almost-Noetherian domains. We characterize these integral domains and establish their properties, placing emphasis on integral closures and length functions. Descent properties are shown. Applications to the computation of elasticities and factorization properties are given
Keywords
Weakly Krull domain , Weakly factorial domain , Elasticity , Cohen–Kaplansky domain , Ideal-length , Length function , Degree function , Almost-Noetherian domain , Infra-Krull domain , ?1-Noetherian domain
Journal title
Journal of Algebra
Serial Year
2005
Journal title
Journal of Algebra
Record number
697299
Link To Document