Title of article :
Deligne–Lusztig restriction of Gelfand–Graev characters
Author/Authors :
Emmanuel Letellier، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
16
From page :
239
To page :
254
Abstract :
Let G be a connected reductive algebraic group defined over a finite field . In [F. Digne, G.I. Lehrer, J. Michel, On Gelʹfand–Graev characters of reductive groups with disconnected centre, J. Reine Angew. Math. 491 (1997) 131–147], it is proved that the Deligne–Lusztig restriction of a Gelfand–Graev character of the finite group is still a Gelfand–Graev character. However, an ambiguity remains on the Gelfand–Graev character obtained. In this paper, we describe the Deligne–Lusztig restrictions of the Gelfand–Graev characters of the finite group using the theory of Kostant–Slodowy transversal slices for the nilpotent orbits of the Lie algebra of G.
Journal title :
Journal of Algebra
Serial Year :
2005
Journal title :
Journal of Algebra
Record number :
697315
Link To Document :
بازگشت