Title of article :
Precrossed modules and Galois theory
Author/Authors :
T. Everaert، نويسنده , , M. Gran، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
The adjunction between crossed modules and precrossed modules over a fixed group can be seen as a special case of a more general adjunction between internal groupoids and internal reflexive graphs in a Malʹtsev variety. By using the categorical Galois theory, we characterize the central extensions with respect to this latter adjunction in terms of the universal algebraic commutator. In particular, we get a description of the central extensions of precrossed modules and of precrossed rings. This characterization provides a natural way to define a categorical notion of Peiffer commutator.
Journal title :
Journal of Algebra
Journal title :
Journal of Algebra