Title of article :
Bitableaux bases of the quantum coordinate algebra of a semisimple group
Author/Authors :
Rodrigo Iglesias، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
29
From page :
308
To page :
336
Abstract :
We extend the Standard Basis Theorem of Rota et al. to the setting of quantum symmetrizable Kac–Moody algebras. In particular, we obtain a procedure to give a presentation of the quantum coordinate algebra of any semisimple group, for generic q. More precisely, given any integrable module V of a quantum symmetrizable Kac–Moody algebra , we obtain a generating set of the ideal of relations among the matrix coefficients of V, and we give an upper bound for the degrees of these polynomials. Our approach is based on the theory of crystal bases and Littelmannʹs generalization of the plactic algebra.
Keywords :
Bitableaux , Quantum function algebra , Plactic monoid , crystal bases , Kac–Moody algebra , Robinson–Schensted correspondence
Journal title :
Journal of Algebra
Serial Year :
2006
Journal title :
Journal of Algebra
Record number :
697564
Link To Document :
بازگشت