Title of article :
Schur algebras of classical groups
Author/Authors :
Qunhua Liu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
21
From page :
867
To page :
887
Abstract :
Throughout this paper the base field will be . By Dotyʹs definition [S. Doty, Polynomial representations, algebraic monoids, and Schur algebras of classical type, J. Pure Appl. Algebra 123 (1998) 165–199], a Schur algebra of a classical group G is the image of the representation map , where is the natural representation and r any natural number. These Schur algebras are semisimple over . Firstly we determine when the Schur algebras are generalized Schur algebras in Donkinʹs sense (see [S. Donkin, On Schur algebras and related algebras, I, J. Algebra 104 (1986) 310–328]). The main step is to decompose the tensor space , using path model by Littelmann [P. Littelmann, A Littlewood–Richardson rule for symmetrizable Kac–Moody algebras, Invent. Math. 116 (1994) 329–346]. Secondly we relate Schur algebras with different parameters and form inverse systems from Schur algebras in the same type. We find the inverse limit naturally contains the universal enveloping algebra of the corresponding Lie algebra.
Keywords :
Inverse system , Path model , Classical Lie algebras , Schur algebras , classical groups
Journal title :
Journal of Algebra
Serial Year :
2006
Journal title :
Journal of Algebra
Record number :
697591
Link To Document :
بازگشت